
Vrije Universiteit Amsterdam
Herbert Bos

software had no bugs?

2010
Security problems are caused by

–Software bugs, and

–Configuration bugs

Impossible

to write software without bugs

2016
Even if the software is perfect

–and well-configured

it is still vulnerable!

What does that mean for

formally verified systems?

Credits

Erik Bosman

Ben Gras

Kaveh Razavi

Victor van der Veen

Cristiano Giuffrida

https://vusec.net
4

https://vusec.net

BinArmor (USENIX ATC ’12)
ASLR3 (USENIX Sec ’12)
ShrinkWrap (ACSAC ’15)
StackArmor (NDSS ’15)
PathArmor (CCS ’15)
TypeArmor (S&P ’16)
MvArmor (DSN ’16)
CodeArmor (EuroS&P’16)
APM (USENIX Sec ’16)
VTPin (ACSAC ‘16)
TypeSan (CCS ‘16)

Out of Control (S&P ’14)
SROP (S&P ’14)
Size Does Matter (USENIX Sec ’14)
Allocation Oracles (USENIX Sec ’16)
Thread Spraying (USENIX Sec ’16)
Dedup est machina (S&P’16)
Flip Feng Shui (USENIX Sec ’16)
Drammer (CCS’16)

Defenses Attacks
https://vusec.net

5

https://vusec.net

Software

Exploitation:

2010

6

Software

Exploitation:

2010

Bugs,

Bugs

Everywhere!

7

Software

Exploitation:

2010

Attacker

Exploits

Vulnerable

Software

8

Software

Exploitation:

2010

Attacker

Owns

Application

9

Software

Exploitation:

2010

Attacker

Owns

System

10

Software Exploitation:

2010

Systems security problems caused by bugs
Software and configuration bugs

Weak security implementations

Impossible to write software without bugs
However, we can mitigate their impact

Many defenses proposed by industry and academia

11

Software

Exploitation:

2016

How to Find

Memory R/W

Primitives?

12

Software

Exploitation:

2016

Memory R:

Hw/Sw Side

Channels

13

Software

Exploitation:

2016

Memory W:

Hardware

Glitches

14

Software

Exploitation:

2016

Memory R/W:

Back to

Reliable

Exploits

15

Software

Exploitation:

2016

Memory R/W:

Back to

Reliable

Exploits

16

Software Exploitation:

2016

Even if the software is perfect...
...with no bugs, well-configured, and latest defenses

...it is still vulnerable!

Attackers abuse properties of modern hw

and sw for reliable exploitation

We’ll look at 2 examples (browsers, clouds)

with 2 properties (dedup, Rowhammer)

17

EXAMPLE 1

Bug-free Exploitation in Browsers

18

Dedup Est Machina

Published at IEEE S&P 2016
with Erik, Kaveh, Cristiano

Won Pwnie Award at Black HAT 2016

“Most
Innovative

Research”

Exploit of Microsoft Edge browser on

Windows 10 from malicious JavaScript
...without relying on a single software bug

19

Memory deduplication

(software side channel)

Dedup Est Machina

20

Memory deduplication

(software side channel)

+

Rowhammer

(hardware glitch)

Dedup Est Machina

21

Memory deduplication

(software side channel)

+

Rowhammer

(hardware glitch)

Exploit MS Edge without software bugs

(from JavaScript)

Dedup Est Machina

22

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

23

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

24

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

Dedup Est Machina:

Overview

25

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

26

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

27

A strategy to reduce physical memory usage

Removes duplication in physical memory

Common in virtualization environments

Now also enabled by default on Windows
Windows 8.1

Windows 10

Memory Deduplication

28

Memory Deduplication:
Mechanics

29

Memory Deduplication:
Mechanics

30

Memory Deduplication:
Mechanics

31

Memory Deduplication:
Mechanics

32

Memory Deduplication:
Mechanics

33

Memory Deduplication:
Mechanics

34

Deduplicated memory is origin-agnostic

Merges pages across security boundaries

Attackers can use this as a side channel!

Memory Deduplication:

The Problem

35

Memory Deduplication:
Timing Side Channel

36

Memory Deduplication:
Timing Side Channel

37

Memory Deduplication:
Timing Side Channel

38

Memory Deduplication:
Timing Side Channel

39

Memory Deduplication:
Timing Side Channel

40

Memory Deduplication:
Timing Side Channel

41

Memory Deduplication:
Timing Side Channel

42

Memory Deduplication:
Timing Side Channel

43

Attacker can now leak 1 bit of information

(directly from JavaScript and system-wide)

“Does the victim

process have this

page in memory?”

Memory Deduplication:

Side-channel Leaks

44

Very coarse-grained. Still interesting?
Is user logged into bank website X?

Memory Deduplication:

Side-channel Leaks

45

Very coarse-grained. Still interesting?
Is user running software X?

Memory Deduplication:

Side-channel Leaks

Skype not running
46

Very coarse-grained. Still interesting?
Is user running software X?

Memory Deduplication:

Side-channel Leaks

Skype running
47

For software exploitation, 1 bit won’t really cut it

(e.g., need to leak 64-bit pointers for MS Edge)

“Can we generalize this to leaking

arbitrary data like randomized

pointers or passwords?”

Memory Deduplication:

Software Exploitation

48

Challenge 1:

The secret we want to leak does
not span an entire memory page

Dedup Est Machina:
Challenges

49

Turning a secret into a page

Dedup Est Machina:
Challenges

50

Turning a secret into a page

Dedup Est Machina:
Challenges

51

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Dedup Est Machina:
Challenges

52

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Primitive #1
Primitive #2
Primitive #3

Dedup Est Machina:
Challenges

53

Primitive #1: Alignment Probing

Dedup Est Machina:
Primitives

54

Primitive #1: Alignment Probing

Dedup Est Machina:
Primitives

55

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

58

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

59

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

60

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

61

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

62

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

63

Heap pointers are word aligned
Alignment probing won’t cut it, same for primitive #2

Time for primitive #3!

“How do we leak a heap pointer

if we can only leak the

secret all at once?”

Dedup Est Machina:

Leaking Heap Pointer

64

Only 23 people for

a 50% same-

birthday chance

You compare

everyone with

everyone else

→ Any match

suffices!

Dedup Est Machina:

Birthday Paradox

65

Dedup Est Machina:
Birthday Paradox

66

Dedup Est Machina:
Birthday Paradox

67

Primitive #3:
Birthday Heapspray

68

Primitive #3:
Birthday Heapspray

69

Primitive #3:
Birthday Heapspray

70

Primitive #3:
Birthday Heapspray

71

Primitive #3:
Birthday Heapspray

72

Primitive #3:
Birthday Heapspray

73

Primitive #3:
Birthday Heapspray

74

Primitive #3:
Birthday Heapspray

75

Primitive #3:
Birthday Heapspray

76

Primitive #3:
Birthday Heapspray

77

Primitive #3:
Birthday Heapspray

78

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

79

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

80

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

81

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

82

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

83

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

84

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

85

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

86

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

87

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

88

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

89

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

90

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

Dedup Est Machina:

Overview

91

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

92

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

93

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

94

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

95

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

96

Pointer Pivoting

Dedup Est Machina:
Creating a Fake Object

97

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

98

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

99

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

100

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

101

Double-sided Rowhammer

Dedup Est Machina:
Referencing the Fake Object

102

Double-sided Rowhammer

Dedup Est Machina:
Referencing the Fake Object

103

Double-sided Rowhammer

Dedup Est Machina:
Referencing the Fake Object

104

Double-sided Rowhammer

Dedup Est Machina:
Referencing the Fake Object

105

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

106

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

107

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

108

Dedup Est

Machina:

Can One

Attack the

Full System?

109

Deduplication is enabled system-wide

We can leak secrets from other processes

Say arbitrarily long passwords

E.g., 30-byte password hashes in nginx

System-wide Rowhammer is more involved

We don’t “own” other processes’ physical memory

We’ll look at this in our next example

Dedup Est Machina:

System-wide Exploitation

110

We shared our MS Edge exploit with Microsoft

and they addressed it in MS-16-093, July 18th

(CVE-2016-3272) by temporarily disabling

memory deduplication on Windows 10

Disable it on legacy systems (Powershell):

Dedup Est Machina:

Impact

111

EXAMPLE 2

Bug-free Exploitation in Clouds

112

Published at USENIX Security 2016
with Ben, Kaveh, Erik, Herbert, and Bart (KU Leuven)

Much media attention

System-wide exploits in public KVM clouds
...without relying on a single software bug

Flip Feng Shui

113

Rowhammer

(hardware glitch)

Flip Feng Shui:

Overview

114

Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)

Flip Feng Shui:

Overview

115

Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)

Cross-VM compromise in public Linux/KVM

clouds without software bugs

Flip Feng Shui:

Overview

116

Flip Feng Shui:

Attacker’s Goals

Linux/KVM

KSM:

cross-VM

memory

deduplication

117

Flip Feng Shui:

Attacker’s Goals

Linux/KVM

Target sensitive

memory page

in

victim VM’s

memory

118

Flip Feng Shui:

Attacker’s Goals

Linux/KVM

Corrupt

sensitive

page

to subvert

victim VM

119

Double-sided Rowhammer

Flip Feng Shui:
Probabilistic Rowhammering

120

Seaborn’s Attack

Flip Feng Shui:
Probabilistic Rowhammering

121

Step 1:

The attacker needs to find a
vulnerable physical page to flip
bits at a given sensitive offset

Flip Feng Shui:
Mechanics

122

Flip Feng Shui:
Templating

123

Flip Feng Shui:
Templating

124

Flip Feng Shui:
Templating

125

Flip Feng Shui:
Templating

126

Flip Feng Shui:
Templating

127

Step 2:

The attacker needs to force the
system to map the victim page
into the vulnerable template

Flip Feng Shui:
Mechanics

128

Flip Feng Shui:
Physical Memory Massaging

129

Flip Feng Shui:
Physical Memory Massaging

130

Flip Feng Shui:
Physical Memory Massaging

131

Flip Feng Shui:
Physical Memory Massaging

132

Step 3:

The attacker needs to flip the
bit at the sensitive offset in
the vulnerable template

Flip Feng Shui:
Mechanics

133

Flip Feng Shui:
Exploitation

134

Flip Feng Shui:
Exploitation

135

Flip Feng Shui:
Exploitation

136

The attacker wants a victim page:

containing security-sensitive data

Corruption should result in cross-VM compromise

with predictable content

For memory deduplication to map it into attacker VM

with ideally many sensitive offsets

Easier to find useful templates

Flip Feng Shui:

Finding a Victim Page

137

How about public cryptographic keys?

Public keys are not secret, thus predictable

Arbitrary corruption weakens their security

Flip Feng Shui:

Finding a Victim Page

138

How about public cryptographic keys?

Public keys are not secret, thus predictable

Arbitrary corruption weakens their security

Target OpenSSH’s ~/.ssh/authorized_keys
to SSH to victim VM and login as administrator

Flip Feng Shui:

OpenSSH Attack

139

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

140

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

Attempt SSH

connection

141

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

Check

authorized_keys

Attempt SSH

connection

142

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

Craft victim

page content

in

vulnerable

template

143

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

Dedup moves

the victim page

to the

vulnerable

template

144

Flip Feng Shui:

OpenSSH Attack

Linux/KVM
Hammer time!

145

Flip Feng Shui:

OpenSSH Attack

Linux/KVM

Changes are

reflected

in the

victim page

Hammer time!

146

A bit flip in a public RSA key...

Results in a weak key one can factorize

Easy to reconstruct the new private key

We do this in minutes and login to the VM!

Flip Feng Shui:

OpenSSH Attack

147

Flip Feng Shui:

OpenSSH Attack

148

“What if we don’t know

the public key(s) of the

administrator?”

Flip Feng Shui:

OpenSSH Attack

149

Flip Feng Shui:

apt-get Attack

Linux/KVM

Wait for apt-get

update on

Ubuntu

or Debian

victim VM

150

Flip Feng Shui:

apt-get Attack

Linux/KVM

Check
sources.list

debian.org

ubuntu.com

...

Wait for apt-get

update on

Ubuntu

or Debian

victim VM

151

Flip Feng Shui:

apt-get Attack

Linux/KVM

Corrupt URLs in
sources.list

152

With a bit flip in a mirror domain name...

The victim VM installs our own packages from:

ubunvu.com

ucuntu.com

...

(which we own)

Flip Feng Shui:

apt-get Attack

153

But fortunately, the packages are signed!

Wait…

154

We can:

Flip a bit in trusted.gpg
where apt-get’s trusted package public keys are stored

Generate the new corresponding private key

Again, we can do this in minutes

Sign our own packages

Say from ubunvu.com

Install & run anything we want in the victim VM

Flip Feng Shui:

apt-get Attack

155

Notified:

Red Hat, Oracle, Xen, VMware, Debian, Ubuntu,

OpenSSH, GnuPG, hosting companies

Flip Feng Shui:

Impact

NCSC did all the

hard work, thanks!

GnuPG “included

hw bit flips in their

threat model”
156

“Can we just disable memory

deduplication and buy

better DRAM?”

Yes, you really should, but...

Mitigations

157

No dedup?

Need another memory massaging primitive

E.g., just exploit predictable memory reuse

patterns in common page allocators

Basic approach:

Fill physical memory with attacker-allocated pages

Find a vulnerable template

Release corresponding physical page to allocator

Trigger allocation of victim page

The allocator has only 1 option to fulfill the allocation

Mitigations

158

Better DRAM?

Not so fast

Rowhammer exploits fundamental DRAM properties

Discovered on DDR3, still there on DDR4

Despite targeted countermeasures

Originally on x86, we found flips on ARM

See our upcoming Drammer CCS’16 paper

ECC memory is not a panacea

Not cheap/widespread, can’t fix all bit flips

Mitigations

159

No dedup and no Rowhammer?

Other primitives will come along

Expect:

More hw/sw properties you didn’t know about

More side channels

More hardware glitches

A radical change in the way we think about

sys security and “reasonable” threat models

Mitigations

160

Flip Feng

Shui:

Is Physics

Part of Your

Threat Model

Yet?

161

Rethinking Systems

Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation

improvements, since releasing Edge one year ago,

there have been no zero day exploits targeting Edge”

162

Rethinking Systems

Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation

improvements, since releasing Edge one year ago,

there have been no zero day exploits targeting Edge”

[Aug 4, 17:00] VUSec: “Dedup Est Machina: One can

exploit the latest Microsoft Edge with all the defenses

up, even in absence of software/configuration bugs”

163

Rethinking Systems

Security

Formally verified systems

164

Rethinking Systems

Security

Formally verified systems

[Aug 10] VUSec: “Flip Feng Shui: Reliable

exploitation of bug-free software systems”
165

What’s Next?

Start worrying about emerging new threats

Think about new security defenses

Don’t forget the past

E.g., Anomaly detection for Rowhammer attacks

But also:

Randomization

Isolation

...

Rethinking Systems

Security

166

Software security defenses are getting better

But hw and sw are getting extremely complex

Potentially huge unexplored attack surface

Attackers can subvert even “perfect” software

Beyond side channels (but they play a role)

Conclusion

https://vusec.net 167

https://vusec.net

