
Swiss Cyber Storm 2016 – Turbo Talk

Client TLS Testing

Detecting Obfuscated JavaScripts

Prof. Dr. Marc Rennhard

Head of Information Security Research Group

Institute of Applied Information Technology (InIT)

ZHAW School of Engineering

rema@zhaw.ch



About the

Information Security Research Group

• Part of InIT at ZHAW
• InIT: Institute of Applied 

Information Technology 

• ZHAW: Zurich University of 
Applied Sciences

• 3 professors/lecturers, 8-10 researchers

• Main activity: Applied research projects with industrial / 
academic partners
• ≈20 large R&D projects during the past 10 years (mostly CTI and EU)

• One key research area: Automated security analysis and 
security testing



Client TLS Testing

• Motivation

• TLS is the most widely used secure communication protocol

• Several services and tools to test the security of TLS servers

• Only few tools to test the security of client-side TLS implementations and 
configurations

• Goal: Develop a powerful tool for client TLS testing

• Current focus on testing the processing of server certificates

• Very security-critical component as wrong handling of certificates may 
allow e.g. MITM attacks

Testing tool runs as 

TLS server application

Use any TLS client 

application to be tested

1

2



Client TLS Testing – Tool Usage in Practice

• +120 certificate tests integrated, covering various aspects of 
certificates and certificate chains

Passed means the 

behavior is according 

to the RFC / no 

security problem

Failed means not 

compliant with the 

RFC / potential 

security problem

Now the client application to test can initiate repeatedly TLS sessions with the testing tool 

and during each TLS session, a certificate test case is carried out:



Client TLS Testing – Web-based Service



Client TLS Testing – Status and Outlook

• Current status and next steps
• Tool works well to efficiently test client-side TLS implementations

• Systematically test all widespread browsers and TLS libraries with the 
goal to find security problems

• Future plans
• Public release of the testing tool

 Provide Web-based service / release tool as open source software

• Extend with further tests, e.g. TLS protocol fuzzing

• Thanks to all people involved!
• Stefan Berhardsgrütter, Lucas Graf, Damiano Esposito (InIT)

• Tobias Ospelt (modzero)



Detecting Obfuscated JavaScripts

• Motivation

• JavaScript is often used as an attack vector to deliver malware
 XSS vulnerabilities, Web-based malware distribution (drive-by),...

• Detection using signature-based approaches are not ideal, easy to 
circumvent e.g. by obfuscating JavaScripts

• Most malicious JavaScripts are obfuscated

• Benign JavaScripts are usually not obfuscated

• If obfuscated JavaScripts can be reliably detected, this serves as a 
good first indicator whether a script is malicious / benign

• Goal of the project: Find a method to classify JavaScripts as 
obfuscated / non-obfuscated with high accuracy

• Based on a machine learning approach



Detecting Obfuscated JavaScripts – Data Set

• Having a large, representative data set with correctly labelled 

samples is key to machine learning

• Out data set consists of +100'000 JavaScripts

• From different sources: top global websites, JavaScript libraries, 

MELANI (malicious samples)

• Includes samples from more than 10 different obfuscators

• The data set was used to train different binary classifier

• The trained classifier takes any JavaScript as input and classifies it as 

obfuscated / non-obfuscated



Detecting Obfuscated JavaScripts –

Classification Performance

• Boosted Decision Tree performed best to solve the problem

• Two important values to assess the performance of trained 

machine learning models are precision and recall 

• With BDT, we could achieve values of 99% or better

• Less than 1 out of 100 JavaScripts is classified incorrectly



Detecting Obfuscated JavaScripts –

Conclusions and Outlook

• Key Findings
• Machine learning works well to classify obfuscated / non-obfuscated JavaScripts

• Machine Learning is no magic solution: correctly
classifying a script that uses an obfuscator not 
present in the training set is much more difficult 

• Try it out: http://jsclassify.azurewebsites.net/

• Future work
• Our classifier serves as a good indicator for malicious / benign JavaScripts, but the 

ultimate goal is to have a classifier that outputs malicious / benign

• Main obstacle: Number of malicious samples in the data set is currently not 
representative enough (only about 2'700 samples)

• Publications
• S. Aebersold, K. Kryszczuk, S. Paganoni, B. Tellenbach, T. Trowbridge. Detecting 

Obfuscated JavaScripts Using Machine Learning. ICIMP 2016

• B. Tellenbach, S. Paganoni, M. Rennhard. Detecting Obfuscated JavaScripts from 
Known and Unknown Obfuscators using Machine Learning (under review)


