Zh School of
Engineering

aw

Swiss Cyber Storm 2016 — Turbo Talk

Client TLS Testing
Detecting Obfuscated JavaScripts

Prof. Dr. Marc Rennhard

Head of Information Security Research Group
Institute of Applied Information Technology (InIT)
ZHAW School of Engineering

rema@zhaw.ch

AbOUt the School of

Engineering

Information Security Research Group

Part of InIT at ZHAW

e InIT: Institute of Applied
Information Technology

« ZHAW: Zurich University of
Applied Sciences

3 professors/lecturers, 8-10 researchers

* Main activity: Applied research projects with industrial /
academic partners

« =20 large R&D projects during the past 10 years (mostly CTIl and EU)

* One key research area: Automated security analysis and
security testing

Client TLS Testing az\” Enginesring

* Motivation
* TLS is the most widely used secure communication protocol
» Several services and tools to test the security of TLS servers

* Only few tools to test the security of client-side TLS implementations and
configurations

Goal: Develop a powerful tool for client TLS testing
* Current focus on testing the processing of server certificates

* Very security-critical component as wrong handling of certificates may
allow e.g. MITM attacks

Use any TLS client Testing tool runs as
application to be tested TLS server application

Client TLS Testing — Tool Usage in Practice az& Engmeering

rema:tcal marc$ python3 tcal.py www.tcal.test —-c x509
Generating x509 test certificates...

100.0% of all test certificates generated

Waiting for test start

Now the client application to test can initiate repeatedly TLS sessions with the testing tool
and during each TLS session, a certificate test case is carried out:

Running Test: WeakRsa512Key Passed means the
Description: Valid certificate with a weak 512-bit rsa-key behavior is according
Server ready, listening on port 1025 for TLS connection... to the REC / no

Connection established to remote client 127.0.0.1:64037 .
security problem

Running Test: MultipleCnInvalidFirst Failed means not

Description: Su§]ect_conta1ns multiple CN-entries. _ compliant with the

Server ready, listening on port 1025 for TLS connection...)
RFC / potential

Connection established to remote client 127.0.06.1:53129

Test failed security problem

« +120 certificate tests integrated, covering various aspects of
certificates and certificate chains

School of

Engineering

>
=
il

REMA@ZHAW.CH ~

< tcal Service Run Configuration

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam maximus leo a dolor luctus congue. Nulla a sem ligula. Sed vel porttitor sapien, quis iaculis eros.
Phasellus tincidunt quis nulla non lobortis. Cras ultrices eget nulla vitae vestibulum. Donec mattis malesuada arcu quis auctor. Vestibulum a velit augue. Aliquam
varius vitae dolor vel dignissim. Ut ac placerat nisl. Maecenas ac quam eu massa accumsan faucibus at vel neque. Nullam vel justo nisi. Sed tristique ut ligula
eleifend tincidunt. Integer tempor consequat risus euismod aliquam. Ut blandit metus sit amet neque volutpat porta. Curabitur fermentum quam ut ante luctus

luctus.
Name
Test Browser XY - 2016-10-19 A Home I About & Contact iERuns REMA@ZHAW.CH +
Description
m Missing Intermediate A chain of certificates where the first intermediate CA is missing a basic constraint extension. m
Basic Constraints
Extensions
m Multiple Cn Invalid First ~ Subject contains multiple CN-entries.
m Multiple Cn Valid First Subject contains multiple CN-entries. m
2 m Not Authorized For A certificate that has an unsuitable value in the key usage extension (cRLSign=true, not allowed for m
Handshake TLS-Handshake).
m Unknown Critical A certificate that has an non-standard critical extension entry. m
Extension
Common Name Valid certificate signed by root-ca with common name BmpString-encoded

Encoding Bmp String

Common Name Valid certificate signed by root-ca with common name GraphicString-encoded m
Encoding Graphic
String

Client TLS Testing — Status and Outlook az\” Engmeering

« Current status and next steps
* Tool works well to efficiently test client-side TLS implementations

» Systematically test all widespread browsers and TLS libraries with the
goal to find security problems

* Future plans

* Public release of the testing tool
= Provide Web-based service / release tool as open source software

» Extend with further tests, e.g. TLS protocol fuzzing

» Thanks to all people involved!
» Stefan Berhardsgrutter, Lucas Graf, Damiano Esposito (InIT)
* Tobias Ospelt (modzero)

Detecting Obfuscated JavaScripts Zh oz

* Motivation

e JavaScript is often used as an attack vector to deliver malware
= XSS vulnerabilities, Web-based malware distribution (drive-by),...

» Detection using signature-based approaches are not ideal, easy to
circumvent e.g. by obfuscating JavaScripts

* Most malicious JavaScripts are obfuscated
* Benign JavaScripts are usually not obfuscated

 If obfuscated JavaScripts can be reliably detected, this serves as a
good first indicator whether a script is malicious / benign

« Goal of the project: Find a method to classify JavaScripts as
obfuscated / non-obfuscated with high accuracy

* Based on a machine learning approach

School of

Detecting Obfuscated JavaScripts — Data Set Engineering

« Having a large, representative data set with correctly labelled
samples is key to machine learning

« Qut data set consists of +100'000 JavaScripts

* From different sources: top global websites, JavaScript libraries,
MELANI (malicious samples)

* Includes samples from more than 10 different obfuscators

* The data set was used to train different binary classifier

* The trained classifier takes any JavaScript as input and classifies it as
obfuscated / non-obfuscated

Detecting Obfuscated JavaScripts — ZhSchooI of

. po . Engineering
Classification Performance aw
AP BPM BDT DF DJ LDSVM LR NN SVM

Non p 80.46% 02.44% 99.06% 98.50% 07.93% 03.53% 78.31% 95.64% 81.65%
Obfuscated r 66.31% 78.03% ||98.97%|| 98.14% 98.10% 88.40% 68.28% 90.02% 66.82%

F1 72.70% 84.63% | 99.01% | 98.32% 08.02% 90.89% 7295% 92.74% 73.50%

S 7752 7752 7752 7752 7752 7752 7752 7752 7752
Obfuscated p 89.21% 92.61% 99.65% 99.37% 99.36% 06.14% 89.68% 96.68% 89.39%

r 94.54% 97.73% |199.68%|| 99.49% 99.30% 97.92% 93.58% 98.61% 94.90%

F1 91.80% 95.10% | 99.67% | 99.43% 99.33% 97.02% 91.59% 97.63% 92.07%

S 22842 22842 22842 22842 22842 22842 22842 22842 22842

Fig. 1. Performance of the classifiers to classify non-obfuscated and obfuscated scripts, using all features.

» Boosted Decision Tree performed best to solve the problem

« Two important values to assess the performance of trained
machine learning models are precision and recall
* With BDT, we could achieve values of 99% or better
* Less than 1 out of 100 JavaScripts is classified incorrectly

Detecting Obfuscated JavaScripts — ZHSchool of

Engineering

Conclusions and Outlook aw

- Key Findings
* Machine learning works well to classify obfuscated / non-obfuscated JavaScripts

* Machine Learning is no magic solution: correctly
classifying a script that uses an obfuscator not
present in the training set is much more difficult Classification of 130137 bytes Javascript.

- Try it out: http://jsclassify.azurewebsites.net/ Scored abel: Nonobfuscated

Classification Result

Scored Probability: 2.60754968621768E-05

 Future work

* Our classifier serves as a good indicator for malicious / benign JavaScripts, but the
ultimate goal is to have a classifier that outputs malicious / benign

* Main obstacle: Number of malicious samples in the data set is currently not
representative enough (only about 2'700 samples)

» Publications
* S. Aebersold, K. Kryszczuk, S. Paganoni, B. Tellenbach, T. Trowbridge. Detecting
Obfuscated JavaScripts Using Machine Learning. ICIMP 2016

* B. Tellenbach, S. Paganoni, M. Rennhard. Detecting Obfuscated JavaScripts from
Known and Unknown Obfuscators using Machine Learning (under review)

