What if

software had no bugs?

ﬂb Herbert Bos

Vrije Universiteit Amsterdam

2010

Security problems are caused by
—Software bugs, and
—Configuration bugs

Impossible
to write software without bugs

2016

Even if the software is perfect
—and well-configured

it is still vulnerable!

What does that mean for
formally verified systems?

Credits

Erik Bosman

Ben Gras

Kaveh Razavi
Victor van der Veen
Cristiano Giuffrida

“VUSec

https://vusec.net

https://vusec.net

BinArmor (USENIX ATC '12)
ASLR3 (USENIX Sec '12)
ShrinkWrap (ACSAC'15)
StackArmor (NDSS '15)
PathArmor (CCS '15)
TypeArmor (S&P '16)
MvArmor (DSN '16)
CodeArmor (EuroS&P'16)

Out of Control (S&P '14)
SROP (S&P '14)
Size Does Matter (USENIX Sec '14)
Allocation Oracles (USENIX Sec '16)
Thread Spraying (USENIX Sec '16)
Dedup est machina (S&P'16)
Flip Feng Shui (USENIX Sec '16)
Drammer (CCS'16)

APM (USENIX Sec '16)
VTPin (ACSAC '16)
TypeSan (CCS '16)

-

Defenss VUSec Attacks

https://vusec.net

https://vusec.net

Software
Exploitation:

2010

Software
Exploitation:

2010

Software
Exploitation:

2010

Software
Exploitation:

2010

Software
Exploitation:

2010

Software Exploitation:

2010

Systems security problems caused by bugs
Software and configuration bugs
Weak security implementations

Impossible to write software without bugs
However, we can mitigate their impact
Many defenses proposed by industry and academia

11

Software
Exploitation:

2016

Software
Exploitation:

2016

Software
Exploitation:

2016

Software
Exploitation:

2016

Software
Exploitation:

2016

Software Exploitation:

2016

Even if the software Is perfect...

...with no bugs, well-configured, and latest defenses
...itis still vulnerable!

Attackers abuse properties of modern hw
and sw for reliable exploitation

We’'ll look at 2 examples (browsers, clouds)
with 2 properties (dedup, Rowhammer)

17

EXAMPLE 1

Bug-free Exploitation in Browsers

Dedup Est Machina

Published at IEEE S&P 2016

with Erik, Kaveh, Cristiano

Won Pwnie Award at Black HAT 2016

¥ “Most
O o Innovative
blackhat ; \ Research”
LIS A 20015 ¢

Exploit of Microsoft Edge browser on

Windows 10 from malicious JavaScript

...without relying on a single software bug 1

Dedup Est Machina

Memory deduplication
(software side channel)

20

Dedup Est Machina

Memory deduplication
(software side channel)
+
Rowhammer
(hardware glitch)

21

Dedup Est Machina

Memory deduplication

(software side channel)
+

Rowhammer
(hardware glitch)

v

Exploit MS Edge without software bugs
(from JavaScript)

22

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers

chakra.dll

/

23

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers

JavaScript Array chakra.dll

— \ /

2|7

24

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers
Create a fake JavaScript object

A7

25

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers
Create a fake JavaScript object
+
Rowhammer
Create a reference to our fake object

=\

26

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers
Create a fake JavaScript object
+
Rowhammer
Create a reference to our fake object

= iz

27

Memory Deduplication

A strategy to reduce physical memory usage
Removes duplication in physical memory
Common in virtualization environments

Now also enabled by default on Windows
Windows 8.1
Windows 10

28

Memory Deduplication:

Mechanics

physical memory

process A

process B

Memory Deduplication:

Mechanics

physical memory

e |
. y
e
v
3

process A
HEEEEEEE
HEEEEEEE
HEEEEEEEE

process B

Memory Deduplication:
Mechanics

physical memory process A

process B

L e Wil O
| S

Memory Deduplication:
Mechanics

physical memory process A

-
EEEENEEE < BPCVE
EREEEE -

I
= U ilw 2
B

Bl " B
e | _—
AN~ f A
Sl I8 i " , Sl
(=
hr‘

process B

H
PN &
A
(54
i

Memory Deduplication:
Mechanics

physical memory process A

L b

process B

'—"!= |8
1§ i W -
.
‘-.-du

Memory Deduplication:
Mechanics

physical memory process A

L2 b
* ok

process B

SR P T
~ - o 3 -
* x

‘-.dhz

Memory Deduplication:

The Problem

Deduplicated memory is origin-agnostic
Merges pages across security boundaries

Attackers can use this as a side channel!

o

35

Memory Deduplication:
Timing Side Channel

normal write

h— ¥

Memory Deduplication:
Timing Side Channel

normal write

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

5

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

trap
to

kernel

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

trap copy
to whole

kernel page

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

__- ._. m m m
trap copy update
to whole page

" kernel page tables

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

B .7 M7 X7 X7 X\

trap copy update return
to whole page from
kernel page tables kernel

Memory Deduplication:
Timing Side Channel

normal write

copy on write (due to deduplication)

MR R TR A T

trap copy update return
whole page from write 2" °
kernel page tables kernel

Memory Deduplication:

Side-channel Leaks

Attacker can now leak 1 bit of information
(directly from JavaScript and system-wide)

“Does the victim
process have this
page in memory?”

Memory Deduplication:

Side-channel Leaks

Very coarse-grained. Still interesting?
Is user logged into bank website X?

2N

ING %

F ABN-AMRO

SNS % sk KNAD
Rabobank \g Triodos @ Bank

45

ASNT BANK
RegioBank *

Memory Deduplication:
Side-channel Leaks

Very coarse-grained. Still interesting?
Is user running software X?

Skype not running

Memory Deduplication:

Side-channel Leaks

Very coarse-grained. Still interesting?
Is user running software X?

Skypé'running

a7

Memory Deduplication:

Software Exploitation

For software exploitation, 1 bit won't really cut it
(e.g., need to leak 64-bit pointers for MS Edge)

“Can we generalize this to leaking
arbitrary data like randomized
pointers or passwords?”

"

Dedup Est Machina:
Challenges

Challenge 1:

The secret we want to leak does
not span an entire memory page

Dedup Est Machina:
Challenges

Turning a secret into a page

secret

Dedup Est Machina:
Challenges

Turning a secret into a page

secret page

Dedup Est Machina:
Challenges

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Dedup Est Machina:
Challenges

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Primitive #2

Dedup Est Machina:
Primitives

Primitive #1: Alignment Probing

secret

secret page

Dedup Est Machina:
Primitives

Primitive #1: Alignment Probing

known data

secret

secret page

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers

chakra.dll

/

58

Dedup Est Machina:
Leaking Code Pointer (#1)

JIT Function Epilogue in MS Edge

secret

S~

mov RCX,0x1c20 || mov RAX, [code address]||jmp RAX
e o] e o] e o] e] -

known data

Dedup Est Machina:
Leaking Code Pointer (#1)

JIT Function Epilogue in MS Edge

page
N

o v e e e e
o e

o]]]]
o]]]]]

Dedup Est Machina:
Leaking Code Pointer (#1)

JIT Function Epilogue in MS Edge

page
N

s sairss] i oo e g
o] e e e e
o o e

mov RCX,0x1c20

o]]]]
o]]]]]

Dedup Est Machina:
Leaking Code Pointer (#1)

JIT Function Epilogue in MS Edge

page
N

o 6801620 | o T e e]
o]]]]]]
o]]]]]]

o]]]]
o]]]]]

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers

JavaScript Array chakra.dll

— \ /

2|7

63

Dedup Est Machina:

Leaking Heap Pointer

Heap pointers are word aligned
Alignment probing won't cut it, same for primitive #2

Time for primitive #3!

"How do we leak a heap pointer
If we can only leak the

secret all at once?”o

')

Dedup Est Machina:

Birthday Paradox

Probability of People Sharing Birthday:

Only 23 people for " o
a 50% same-
blrthday chance

Probability of a Pa

You compare H
everyone with A |

everyone else
— Any match

suffices! » vE Lt
LI R L

65

Dedup Est Machina:
Birthday Paradox

Dedup Est Machina:
Birthday Paradox

Primitive #3:

Birthday Heapspray

physical memory

attacker memory

victim memory

Primitive #3:

Birthday Heapspray

physical memory

HEEEEEEE
HEEEEEEE
HEEEEEEE
a2 i
5

attacker memory

victim memory

Primitive #3:

Birthday Heapspray

physical memory

T 2

w S
aev, E

attacker memory

victim memory

Primitive #3:

Birthday Heapspray

physical memory

T e n -

v s L
e

L4
I e
S | U1
| |
[==] g
E N

‘ o N
T 6
1

attacker memory

L A
8-
W o
-~
> N

victim memory

B " ; g Xl #
: v .\Au ‘,\.\ = -
& B | _ .
' I— I =3 “' .w/z I

Primitive #3:

Birthday Heapspray

physical memory

S T
el Y
L ’
5

-—n

. B
=t

- A

N

attacker memory

- 7 DAV =0
T > ’PP =N\
/ﬂ.. 'a
5

. il L=) I....

victim memory

Primitive #3:

Birthday Heapspray

physical memory

” ' : .

Wl)

e
il L=
»

Fll 5
&% '
| .
¥ 4

attacker memory

. \ ...

victim memory

Primitive #3:

Birthday Heapspray

physical memory

attacker memory

victim memory

Primitive #3:

Birthday Heapspray

physical memory

attacker memory

HiSSs ¢ (Il
IIIIIIII

victim memory

Primitive #3:

Birthday Heapspray

physical memory

attacker memory

DEE e v)
Illlllll

victim memory

)

| :) A
?E'“Wiiﬂgﬁ'iii,
S I-.I 5B ‘\"‘ ‘?‘/ i _7‘
T—

Primitive #3:
Birthday Heapspray

physical memory attacker memory

. r v‘v- 5 .- vf’_‘\krﬂa-

IIIEE mt
IIFIII“‘ III

Primitive #3:
Birthday Heapspray

physical memory attacker memory

vf(,'g' e = _— ’):;_i\'\a
e i) - VR "
i L —

Rl
| B =7

victim memory

- _ ‘A-;
= B
—"

Pl

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Secret Pages

1M Aligned
objects

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Secret Pages

1M Aligned
objects

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Secret Pages

page

page

1M Aligned
objects
page

page

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Secret Pages

page

page

1M Aligned
objects
page

page

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Secret Pages

1M Aligned
objects

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Probe Pages

727

777

guessed 777

aligned 333

addresses, .
128M apart

27?

Dedup Est Machina:
Leaking Heap Pointer (#3)

Creating Probe Pages

727

777

guessed 777

aligned 333

addresses, .
128M apart

27?

Dedup Est Machina:
Leaking Heap Pointer (#3)

Birthday Heapspray

+1M, +1M, +1M, ...
Y
[[

+ + +
Nl
" NNN

o 0 ©

Dedup Est Machina:
Leaking Heap Pointer (#3)

Birthday Heapspray

k22
EEEEEEEEE NN

EEEEEEE NN) 2
O R
T e
BERCrrenneEanEeE
secret pages <
(allocated — HNESSESENENESEEN
dd EEEEEEEEEEEEEEE
addresses) EEEEE ERERNEE
EEEEEEEEEEEEEEEE

Dedup Est Machina:

Leaking Heap Pointer (#3)

Birthday Heapspray

secret pages
(allocated
addresses)

probe pages (guessed addresses)

+1M, +1M, +1M, ...

R22

NN S
EEEEE == PR
AR EER NN N S i
EEEEEEEEENEEEEE O
I S22

|| PR TR R Rae

Bl A
NN

I 1

[50555 0 72 {50 T I IS
{50 5 0 5 5 5 72 [R
I 15 2 [6
III 15 5 o E

ll= l=ﬂl===l

I
IIIIIIIIE?JIIIIIE=

Dedup Est Machina:
Leaking Heap Pointer (#3)

Birthday Heapspray

+1M, +1M, +1M, ...

k22
EEEEEEEE EEEENEE

EEEEEEEN EEEEEEN) ‘120"
ENNEEEEE ERREEEE O
EEEEEEEE EEEEEEN O ‘"
SNNENEEE ENEEEEN a
secC I"Et pages < i g1 LRSS/ AL (e 4L
(allocated

addresses) EEESSENN REERENS

r

N
u
u
N
N

(

probe pages gaggsed addresses)

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers
Create a fake JavaScript object

A7

91

Dedup Est Machina:
Creating a Fake Object

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

Fake JavaScript Uint8Array

il 7]
\/

JavaScript Array

Dedup Est Machina:

Overview

Memory deduplication
Leak randomized heap and code pointers
Create a fake JavaScript object
+
Rowhammer
Create a reference to our fake object

= iz

94

Dedup Est Machina:
Creating a Fake Object

Fake JavaScript Uint8Array

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est Machina:
Creating a Fake Object

Fake JavaScript Uint8Array

\

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est Machina:
Creating a Fake Object

Pointer Pivoting

e

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est Machina:
Referencing the Fake Object

Rowhammer

OO

H B BB

Ot

DDR memory

Dedup Est Machina:
Referencing the Fake Object

Rowhammer

OO

row

activation
m = 'm 'Eml N —

Ot

DDR memory

Dedup Est Machina:
Referencing the Fake Object

Rowhammer

HjENNI NN

row
activation

DDR memory

Dedup Est Machina:
Referencing the Fake Object

Rowhammer

row
activation

DDR memory

Dedup Est Machina:
Referencing the Fake Object

Double-sided Rowhammer

row
activation

row
activation

DDR memory

Dedup Est Machina:
Referencing the Fake Object

Double-sided Rowhammer

physical memory

Dedup Est Machina:
Referencing the Fake Object

Double-sided Rowhammer

physical memory

Dedup Est Machina:
Referencing the Fake Object

Double-sided Rowhammer

physical memory

Dedup Est Machina:
Referencing the Fake Object

Pointer Pivoting

\

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est Machina:
Referencing the Fake Object

Pointer Pivoting

e

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est Machina:
Referencing the Fake Object

Pointer Pivoting

e

array) array array
veacor 112 B e

JavaScript Array JavaScript Array

Dedup Est
Machina:

Dedup Est Machina:

System-wide Exploitation

Deduplication is enabled system-wide

We can leak secrets from other processes

Say arbitrarily long passwords

E.qg., 30-byte password hashes in nginx

System-wide Rowhammer is more involved

We don’t “own” other processes’ physical memory

We’'ll look at this in our next example

110

Dedup Est Machina:

Impact

We shared our MS Edge exploit with Microsoft
and they addressed it in MS-16-093, July 18th
(CVE-2016-3272) by temporarily disabling
memory deduplication on Windows 10

Disable it on legacy systems (Powershell):

> Disable-MMAgent -PageCombining

111

EXAMPLE 2

Bug-free Exploitation in Clouds

Flip Feng Shul

Published at USENIX Security 2016
with Ben, Kaveh, Erik, Herbert, and Bart (KU Leuven)

Much media attention

-
/ = Steve Gibson 2+ Follow
"Flip Feng Shui" Security Now! #576
An incredibly righteous and sublime hack:
Weaponizing the RowHammer attack:
- y

System-wide exploits in public KVM clouds

...without relying on a single software bug
113

Flip Feng Shul:

Overview

Rowhammer
(hardware glitch)

114

Flip Feng Shul:

Overview

Rowhammer
(hardware glitch)
+
Memory deduplication
(physical memory massaging primitive)

115

Flip Feng Shul:

Overview

Rowhammer

(hardware glitch)
+

Memory deduplication
(physical memory massaging primitive)

v

Cross-VM compromise in public Linux/KVM
clouds without software bugs

116

Flip Feng Shul:
Attacker’s Goals

KSM:
cross-vM

memory
deduplication

Backing memory 117

Flip Feng Shui:

Attacker’s Goals

tion Host Target sensitive
/KM memory page

N
e —— victim VM’s
' @ memory

Backing memory 118

Flip Feng Shul:

Attacker’s Goals

Backing memory

Corrupt
sensitive

page
to subvert
| victim VM

Flip Feng Shui:
Probabilistic Rowhammering

Double-sided Rowhammer

physical memory

Flip Feng Shui:
Probabilistic Rowhammering

Seaborn’s Attack

physical memory

sprayed page tables
IIIIHH‘I Tl

Flip Feng Shui:
Mechanics

Step 1:

The attacker needs to find a
vulnerable physical page to flip
bits at a given sensitive offset

Flip Feng Shui:
Templating

physical memory

attacker memory

victim memory

Flip Feng Shui:
Templating

physical memory attacker memory

HEE
HEE .
.-- victim memory

Flip Feng Shui:
Templating

physical memory attacker memory

HEE
HEE .
.-- victim memory

Flip Feng Shui:
Templating

physical memory attacker memory

HEE
HEE .
.-. victim memory

Flip Feng Shui:
Templating

physical memory attacker memory

HEE
- .
.-. victim memory

Flip Feng Shui:
Mechanics

Step 2:

The attacker needs to force the
system to map the victim page
into the vulnerable template

Flip Feng Shui:
Physical Memory Massaging

physical memory attacker memory

HEE
- .
.-. victim memory

ir.! a—

i.r_! a—

Flip Feng Shui:
Physical Memory Massaging

physical memory attacker memory

HEE “
v NN .
.-- victim memory

Flip Feng Shui:

Physical Memory Massaging

physical memory

attacker memory

victim memory

Flip Feng Shui:
Physical Memory Massaging

physical memory attacker memory

victim memory

Flip Feng Shui:
Mechanics

Step 3:

The attacker needs to flip the
bit at the sensitive offset in
the vulnerable template

Flip Feng Shui:
Exploitation

physical memory attacker memory

victim memory

Flip Feng Shui:
Exploitation

physical memory attacker memory

victim memory

Flip Feng Shui:
Exploitation

physical memory

attacker memory

EEEENEE
EEEEEEEE

victim memory

L

Flip Feng Shul:

Finding a Victim Page

The attacker wants a victim page:

containing security-sensitive data
Corruption should result in cross-VM compromise

with predictable content
For memory deduplication to map it into attacker VM

with ideally many sensitive offsets
Easier to find useful templates

137

Flip Feng Shul:

Finding a Victim Page

How about public cryptographic keys?
Public keys are not secret, thus predictable
Arbitrary corruption weakens their security

138

Flip Feng Shul:

OpenSSH Attack

How about public cryptographic keys?
Public keys are not secret, thus predictable
Arbitrary corruption weakens their security

Target OpenSSH’s ~/.ssh/authorized keys
to SSH to victim VM and login as administrator

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDMUensMjWvw+d4SLKCVcPOMR
3n2PsSohXBroW/qOcUXBS8NFH1bWXUORC /uSPnAnWH1QYeuIP5SUNnkBXWpDGgjm
WIbrUfA4tgWlBBwjii4dqgqIUWcBGglldBUvgWsWbZ86/NY2fsKLtLDkkleFhcJmN
FXnYkRs3J21BGS7JdUnDd%ue0x2Nk/aSp2GODzAXwDPhwQNw4LQ8/xZTkn5Djq
IAAXBpa+qagqTMdKNItOi/IVLoR/7BqgqgVslt3tbgZmew4IsmUFQMCwKdAxXxBk5TxA
agAjCmwmh+gRt0/tb6tDKzvVCNcHc4968VPXJYK2+Hr/RdY1oYSLoIV/DQcTIy
yYzhUV5v test@source 139

Flip Feng Shul:
OpenSSH Attack

Backing memory

Flip Feng Shul:

OpenSSH Attack

Attempt SSH
connection

n/

Backing memory 141

Flip Feng Shul:
OpenSSH Attack

Check
authorized keys

Attempt SSH
connection

) o d

Backing memory 142

Flip Feng Shui:
OpenSSH Attack

tion Host Craft victim
JKVM page content

N
Victi - | vulnerable
ic Im@ ’é\ template
r | &

Backing memory 143

Flip Feng Shul:
OpenSSH Attack

Dedup moves
the victim page
to the

T e vulnerable

@ template

Backing memory 144

Flip Feng Shul:
OpenSSH Attack

Hammer time!

Victim -~

R / |

y
> -
vy

Backing memory 145

Changes are

reflected
In the

victim page

Flip Feng Shul:
OpenSSH Attack

Victim .

ye Y \(s
-

Backing memory

Hammer time!

146

Flip Feng Shul:

OpenSSH Attack

A bit flip in a public RSA key...

Results in a weak key one can factorize
Easy to reconstruct the new private key
We do this in minutes and login to the VM!

ssh-rsa AAAAB3NzaClycZ2EAAAADAQABAAABAQDMUensM]Wvw+d4SLEKCVcPOMR
3n2PsSohXBroW/qOcUXBBNFH1bWXUORC/uSPnAnWH1QYeuI PSUNnkBXWpDGgjm
WIbrUfA4tgWl1BBw]114gIUWcBGglldBUvgWsWhZ86/NY2fsKLtLDkkleFhcJmN
FXnYkRs3J21BGS7JdUnDd%ue0x2Nk/aSp2 thNdeQEI,"xZTknEqu
TAAXBpa+gagTMdKNItOi/IVLoR/7BggVslt3tByZme
agAjCmwmh+gRt0/tb6tDKzvVCNcHc4968VPXIYK2+Hr /RAY1oYSLoIV/DQcTIy
yYzhUV5Sv testlsource

147

Flip Feng Shul:

OpenSSH Attack

0.8 |- f : : o .

CDF

0.2

0 | /| | | 1 J
0 2 4 6 8 10 12

Attack time (mins) 148

Flip Feng Shul:

OpenSSH Attack

“What if we don’t know
the public key(s) of the
administrator?”

149

Flip Feng Shul:

apt-get Attack

lon Host Wait for apt-get
/KVM update on

Ubuntu
Victim or Debian
victim VM

Backing memory 150

Flip Feng Shui:

apt-get Attack

Check ation Host Wait for apt-get
sources.list /KVM update on
Ubuntu

— T ——— or Debian
victim VM

debian.org @

ubuntu.com
|

—
&

Backing memory 151

Flip Feng Shul:

apt-get Attack

Corrupt URLs In
sources.list

Victim -~

Backing memory 152

Flip Feng Shul:

apt-get Attack

With a bit flip in a mirror domain name...

The victim VM installs our own packages from:
ubunvu.com

ucuntu.com

: Y, &b
(which we own) °°

But fortunately, the packages are signed!

153

Flip Feng Shul:

apt-get Attack

We can:
Flip a bit in trusted.gpg

where apt-get’s trusted package public keys are stored

Generate the new corresponding private key
Again, we can do this in minutes

Sign our own packages
Say from ubunvu.com

Install & run anything we want in the victim VM

155

Flip Feng Shui:

Impact

Notified:

Red Hat, Oracle, Xen, VMware, Debian, Ubuntu,
OpenSSH, GnuPG, hosting companies

NCSC did all the
hard work, thanks! ,

Virtuele servers
kunnen hun buren
aanvallen

G Nnu PG “i nCI Uded gpgv: Tweak default options for extra security.

—

hW blt ﬂIpS |n the|r author NIIBE Yutaka <gniibe@fsij.org=

Fri, 8 Jul 2016 206:26:02 -6566 (16:26 +6968)

th[’eat model” committer NIIBE Yutaka <gniibe@fsij.org>

Fri, 8 Jul 2016 28:20:02 -8500 (10:20 +6908)
commit £32c575e073704e7563048eea6d26844bd fc494b 156

Mitigations

“Can we just disable memory
deduplication and buy
better DRAM?”

Yes, you really should, but...

157

Mitigations

No dedup?
Need another memory massaging primitive

E.g., Just exploit predictable memory reuse
patterns in common page allocators

Basic approach:
Fill physical memory with attacker-allocated pages

Find a vulnerable template
Release corresponding physical page to allocator

Trigger allocation of victim page
The allocator has only 1 option to fulfill the allocation

158

Mitigations

Better DRAM?

Not so fast
Rowhammer exploits fundamental DRAM properties

Discovered on DDR3, still there on DDR4

Despite targeted countermeasures

Originally on x86, we found flips on ARM

See our upcoming Drammer CCS’16 paper

ECC memory Is not a panacea

Not cheap/widespread, can't fix all bit flips
159

Mitigations

No dedup and no Rowhammer?
Other primitives will come along

Expect:

More hw/sw properties you didn’t know about
More side channels

More hardware glitches

A radical change in the way we think about
sys security and “reasonable” threat models

Flip Feng
Shut:

Rethinking Systems

Security

Software security defenses

blgék hat

USA 2016
[Aug 4, 12:00] Microsoft: “Thanks to our mitigation

Improvements, since releasing Edge one year ago,
there have been no zero day exploits targeting Edge”

162

Rethinking Systems

Security

Software security defenses

blgezk hat

LSA 2016

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation
Improvements, since releasing Edge one year ago,
there have been no zero day exploits targeting Edge”

[Aug 4, 17:00] VUSec: "Dedup Est Machina: One can
exploit the latest Microsoft Edge with all the defenses
up, even in absence of software/configuration bugs”

163

Rethinking Systems

Security

Formally verified systems

-

Microsoft Research 9+ Follow
Research MSFTResearch

Feel better. Hacker-proof code has been
confirmed. quantamagazine.org/20160920-
forma ... via @KSHartnett

164

Rethinking Systems

Security

Formally verified systems

-

-

Microsof M’icrzﬁl\'f)__s,oft Research 2+ Follow
Feel better. Hacker-proof code has been
confirmed. quantamagazine.org/20160920-
forma ... via @KSHartnett

[Aug 10] VUSec: “Flip Feng Shui: Reliable
exploitation of bug-free software systems”

165

Rethinking Systems

Security

What’s Next?
Start worrying about emerging new threats
Think about new security defenses

Don’t forget the past
E.g., Anomaly detection for Rowhammer attacks

But also:
Randomization emor\ﬂ
Isolation pp_\e 410 p\'NS\

a
(noW

166

Conclusion

Software security defenses are getting better
But hw and sw are getting extremely complex
Potentially huge unexplored attack surface
Attackers can subvert even “perfect” software
Beyond side channels (but they play a role)

“VUSec

https://vusec.net 167

https://vusec.net

